charisstoma: (Default)
[personal profile] charisstoma
18 DECEMBER, 2014 - 22:21 MARK MILLER
Researchers discover secret recipe of Roman concrete that allowed it to endure for over 2,000 years
https://www.ancient-origins.net/news-history-archaeology/researchers-discover-secret-recipe-roman-concrete-020141

Ancient Rome’s concrete recipe is an impressive feat in architectural history. Some Roman buildings are so spectacular in their construction and beauty that modern builders would never attempt something similar, even with today’s technology. Now engineers are beginning to understand why ancient Roman concrete was so revolutionary.

Rome built many of its buildings and monuments with concrete made of lime, volcanic sand, and volcanic rock. The ancient Romans’ buildings and structures, some of the most spectacular in the world, have withstood chemical and physical onslaught for 2,000 years and are still standing.
colosseumAn advanced concrete recipe allowed the Romans to constructed magnificent structures that no builder would dare to attempt today. Source: BigStockPhoto

Previous research has already found that Roman concrete was far superior to our own modern concrete, which is made to endure about 120 years.

It’s been known for a while that the volcanic sand used in Roman concrete and mortar made their buildings last for so long. Now a new study by a group of engineers and engineering researchers has discovered the precise recipe that made the Roman concrete endure much longer than concrete used today.

The researchers used an ancient recipe written down by Roman architect Vitruvius to mix a batch of mortar. The engineers let it harden for six months and looked at it with microscopes. They found that clusters of a dense mineral form through the Roman process. These strätlingite crystals, formed by the volcanic sand as it binds with limestone, prevented the spread of cracks by reinforcing interfacial zones. Interfacial zones are weak links inside the concrete.
roman concreteA magnified piece of Roman concrete consisting of lime, volcanic sand, and rock ( Wikimedia Commons )

It isn’t just that Roman concrete is more lasting. It is also not as bad for the environment in the manufacturing of it because the mix only needed to be heated to 900 Celsius as opposed to the 1,450 of modern concrete.

“Stronger, longer-lasting modern concrete, made with less fuel and less release of carbon into the atmosphere, may be the legacy of a deeper understanding of how the Romans made their incomparable concrete,” Ancient-Origins.net wrote in 2013. Heating the limestone in 19 billion tons of Portland cement made annually accounts for 7 percent of human-released carbon into the atmosphere, according to the new study.
Ceiling in the PantheonCeiling in the Pantheon, made entirely from Roman concrete. Credit: Giulio Menna / flickr

Rome is situated between two volcanic regions, Monti Sabatini to the north and the Alban Hills to the south. When Augustus became the first emperor of Rome in 27 AD, he initiated a building campaign. After builders settled on using Pozzolonic ash from the Alban Hills’ Pozzolane Rosse ash flow, Augustus decreed that Pozzolonic mortar be the standard in Roman buildings. That decision cemented Rome’s enduring architectural legacy. Roman architects found that this mortar substantially improved the margin of safety in buildings, which were becoming more daring in their design.

The prototypical example of this may be the awe-inspiring Roman Pantheon, a huge concrete building capped by 142-foot dome. It was built in the second century AD.
Roman Panethon
The Roman Pantheon, a huge concrete building that has endured for nearly 2,000 years. Source: BigStockPhoto

“Made entirely out of concrete, without the reinforcing support of structural steel, no modern engineer would dare attempt such a feat, says David Moore, author of The Roman Pantheon: The Triumph of Concrete. ‘Modern codes of engineering practice would not permit such mischief,’” Smithsonian.com says.

Featured image: Roman concrete was used to construct the magnificent pantheon, which has endured for two millennia. Source: BigStockPhoto.

******************************************************************


Scientist believes she’s found the recipe for ancient Roman concrete used 2,000 years ago
https://aleteia.org/2019/07/16/scientist-believes-shes-found-the-recipe-for-ancient-roman-concrete-used-2000-years-ago/

J-P Mauro | Jul 16, 2019
The concrete of ancient Rome was stronger, longer lasting, and more environmentally friendly than the mix we use today.
Scientists have long puzzled over the elusive recipe for ancient Roman concrete, which has withstood the test of time better than any of the concrete that’s been poured in the 20th century. Now, Time reports that Maria Jackson from the University of Utah claims to have unravelled the mystery, and furthermore believes that the ancient Roman process could influence modern-day construction.

Jackson’s findings, published in American Mineralogist, claim the unbreakable strength of ancient Roman concrete is due to a rare chemical reaction that takes place when the mineral aluminium tobermorite is exposed to sea water. The reaction strengthens the mortar and prevents cracks from forming or widening.

The longer the concrete is submerged in sea water, the stronger it becomes, as a mineral mixture of silica oxides and lime grows between the volcanic rock aggregate, which in turns hardens all the components into a single, unyielding piece. Jackson explained how this is different from our current concrete to Time:

“Contrary to the principles of modern cement-based concrete, the Romans created a rock-like concrete that thrives in open chemical exchange with seawater.” She said, adding, “It’s a very rare occurrence in the Earth.”

This may explain the ancient observation of the Roman scientist Pliny the Elder, who wrote in 79 AD that the concrete, “as soon as it comes into contact with the waves of the sea and is submerged, becomes a single stone mass, impregnable to the waves and every day stronger.”

The Pantheon in Rome, still in use over 2,000 years after it was built, is a testament to the strength of ancient Roman concrete. Once a Roman temple, it has been in continuous use throughout history, and since the 7th century has been used as a church dedicated to “St. Mary and the Martyrs.”


Jackson notes that the Roman process was actually much more eco-friendly than our modern method, which is known to produce carbon dioxide. She believes that the old ways of concrete production could teach us a lot, but she notes that the ancient Romans had a greater access to volcanic ash, a primary ingredient, than most countries do today.

Jackson said she is currently experimenting with several substances that could act as a substitute for volcanic ash in the concoction, which would also require lime, sea water, and aluminium tobermorite. She has also proposed that the construction of a planned tidal lagoon in the United Kingdom utilize the ancient Roman concrete in place of steel.

She said that the ancient concrete would be ideal for the tidal lagoon, as the concrete would strengthen with the tide, rather than deteriorating over time. However, she did note that it would take about 120 years to know if the recipe will stand the test of time as well as that of the Romans.

Either way, she believes the ancient concrete would last at least twice as long as our modern concrete.

roman
This account has disabled anonymous posting.
If you don't have an account you can create one now.
No Subject Icon Selected
More info about formatting

Profile

charisstoma: (Default)
charisstoma

October 2023

S M T W T F S
1234567
891011121314
15161718192021
22232425262728
293031    

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Aug. 21st, 2025 06:02 am
Powered by Dreamwidth Studios